|
PROCEDIMIENTO PARA ANALIZAR UNA FUNCIÓN | |||||||||||||||||||
INTRODUCCIÓN | ||||||||||||||||||||
En esta unidad didáctica daremos los procedimientos o pautas para analizar funciones reales de variable real de la forma y=f(x). Expresión explícita de una variable y que depende de otra variable x. Partimos de la expresión dada y=f(x) y queremos obtener toda la información posible de la misma. Todos sabemos que en campos del conocimiento humano, como la Física, la Biología, la Economía, la Arquitectura, la Ingeniería etc., se utilizan funciones matemáticas para relacionar dos variables que intervienen en cierto fenómeno. Si somos capaces de analizar la función tendremos información acerca de dicho fenómeno. Haciendo una representación gráfica de los puntos (x,f(x)) podremos comunicar muy fácilmente el resultado del análisis y extrae conclusiones muy útiles para los problemas reales que dichas funciones modelizan: tendencia, extremos, continuidad, simetría, periodicidad, etc. El concepto de límite de funciones nos permitió llegar a la idea de función continua y función derivada y en este momento el alumnado ya tendrá experiencia en la utilización de estas herramientas para analizar funciones. El procedimiento para la obtención de asíntotas oblicuas o la determinación de las ramas infinitas supondrá una novedad para el estudiante. Conviene poner delante todas las herramientas necesarias para el análisis de funciones, bien entendido que rara vez emplearemos todas para analizar cierta función pero todas serán necesarias según el caso. Finalmente hay que destacar que el estudio de las gráficas de las funciones y en las curvas en general descubrimos, a veces con sorpresa, formas de gran belleza y armonía. El
procedimiento para analizar una función y=f(x) consiste en aplicar las
propiedades y características de las funciones y de sus derivadas que
en síntesis son las siguientes:
|
||||||||||||||||||||
Aprender y practicar el procedimiento general para representar curvas planas en la forma y=f(x) |
Ángel Cabezudo Bueno |
Ministerio de Educación, Cultura y Deporte. Año 2001 | ||
Los contenidos de esta unidad didáctica están bajo una licencia de Creative Commons si no se indica lo contrario.