FUNCIONES DEFINIDAS MEDIANTE OPERACIONES O 

TRANSFORMACIONES DE OTRAS.

4.1. Representación de y = f(x) + b a partir de f(x).

Aquí vamos a analizar cómo, a partir de la gráfica de una determinada función y = f(x), se puede representar con facilidad la gráfica de cualquier función de la forma y = f(x) + b, siendo b un número real cualquiera (positivo o negativo).

 

En esta escena se muestra la gráfica de la función f(x) = x2

También  puedes  ver  la gráfica de la función g(x) = x2 + b. Para ello solamente tienes que darle valores al parámetro b, utilizando el control numérico de la escena.

Dale distintos valores a b, tanto positivos como negativos, y observa qué sucede.

Habrás podido observar que si b es positivo (b>0), la gráfica se desplaza verticalmente hacia arriba b unidades y si b es negativo (b<0) hacia abajo. Es decir, estamos haciendo una traslación vertical, de tal modo que todos los puntos de la gráfica aumentan o disminuyen su ordenada en b unidades.

Es importante destacar que la función transformada no ha variado de forma, es una función que tiene la misma forma que la original, pero que se ha desplazado verticalmente.

Si deseas ver la transformada de otra función, escribe la ecuación de dicha función en la caja de edición azul y pulsa la tecla "Intro", a continuación escribe en la caja de edición roja la misma función sumándole b y pulsa la tecla "Intro".

Es importante que pulses la tecla "Intro" después de escribir cada función y que no se te olvide sumar b a la segunda función.

Ahora solamente te queda darles distintos valores al parámetro b y observar los resultados.

 Luis Caballero Tejero

I.E.S. Alcaria. La Puebla del Río (SEVILLA)

Ministerio de Educación, Cultura y Deporte. Año 2006.
   

Licencia de Creative Commons
Los contenidos de esta unidad didáctica están bajo una licencia de Creative Commons si no se indica lo contrario.