9. Volumes de esferas, cilindros e conos. |
|
Xeometría |
|
|
4. AMPLIACIÓN: DEDUCCIÓN DA FÓRMULA DA SUPERFICIE DA ESFERA. |
||
Chámase zona esférica á superficie esférica comprendida entre dous planos paralelos. |
||
|
Arquímedes descubriu que se os seccionamos horizontalmente por dous planos paralelos, a área da zona esférica é igual á correspondente na superficie lateral do cilindro.
Para
demostralo imos a considerar unha franxa moi estreita. |
|
|
Os
triángulos rectángulos de cor azul claro e amarelo
son semellantes porque as súas hipotenusas son
respectivamente perpendiculares, igualmente o son seus catetos.
Seus ángulos son iguais e seus lados
proporcionais. |
|
|
|
|
|||
|
|
|
|
|
|
Unidade de Eduardo Barbero Corral traducida por Paula Blanco Mosquera |
|
|
|
© Ministerio de Educación. Año 2006 |
|
|
|
Los
contenidos de esta unidad didáctica están bajo una
licencia
de Creative Commons si no se indica lo contrario.