SUMA DE VECTORES | |
Geometría | |
EJERCICIO 5 | |
En la escena siguiente
aparecen cuatro vectores dibujados en la parte superior izquierda, a, b, c y d. Los demás vectores que ves, y que tienen puntos rojos en su origen y en su extremo, son los que vas a utilizar para realizar una serie de sumas de vectores, y son iguales a algunos de los mencionados. Todos los puntos rojos se pueden mover arrastrándolos con el ratón, ahora explicamos cómo. |
|
a) Vas a dibujar con el
ratón el vector a + c. Para ello tienes ya dibujado el primer sumando,
o sea a. Arrastra con el ratón el extremo
de a (punto 1) para dibujar
el segundo sumando, o sea c. b) Ahora arrastra con el ratón el origen de a (punto 2) para dibujar el vector suma a + c. Anota en tu cuaderno las componentes de a, las de c y las de a + c. |
|
c) Ahora
tienes que dibujar el vector c
+ b. Sigue el mismo
procedimiento que antes, pero ahora el primer sumando es c, toma el que tiene de origen el punto
4 y de extremo el punto 3.
d) Ahora tienes que dibujar el vector c + a. Sigue el mismo procedimiento que antes, pero ahora aunque el primer sumando sigue siendo c, toma el que tiene de origen el punto 6 y de extremo el punto 5. e) Comprueba que el vector a + c del apartado b) es igual al vector c + a del apartado d) f) Ahora vas a efectuar
la suma b + c + d. El procedimiento es el mismo que con dos
sumandos. Hay que dibujar un sumando a continuación del otro, y al final unes el origen
del primero con el extremo del último. La punta de flecha que
indica el sentido estará en el extremo del último sumando.
|
3. COMBINA LA SUMA DE VECTORES Y EL PRODUCTO POR UN NÚMERO | |
EJERCICIO
6 a) En la escena siguiente aparecen dos vectores, u y v. Escribe en tu cuaderno sus componentes. El objetivo es dibujar el vector 2u + 3v |
|
b) n es el número que multiplica a u. Puedes ir cambiándolo hasta obtener 2u. Anota las componentes de 2u que ves en la figura c) Para obtener 3v, basta que arrastres con el ratón el extremo del vector 2u. Anota las componentes de 3v que ves en la figura |
|
d) Finalmente arrastra el origen de 2u hasta el extremo de 3v y obtendrás el vector 2u + 3v. Anota las componentes que ves en la figura del vector 2u + 3v y comprueba que son la suma de las de 2u y las de 3v |
Ángela Núñez Castaín | |
Ministerio de Educación, Cultura y Deporte. Año 2001 | |
Los contenidos de esta unidad didáctica están bajo una licencia de Creative Commons si no se indica lo contrario.