FUNCIÓN EXPONENCIAL_1 | |
Análisis | |
1. DESCRIPCIÓN | |||||||||||||
Se llaman funciones exponenciales a las funciones de la forma f(x) = ax o y = ax, donde la base de la potencia "a" es constante (un número) y el exponente la variable x. UN EJEMPLO REAL Algunos tipos de bacterias se reproducen por "mitosis", dividiéndose la célula en dos cada espacios de tiempo muy pequeños, en algunos casos cada 15 minutos. ¿Cuántas bacterias se producen en estos casos, a partir de una, en un día?
siendo x los intervalos de 15 minutos:..24 = 16 en una hora, 28 = 256 en dos horas,... 224·4 = 296 = 7,9·1028. ¡en un día!. Esto nos da idea del llamado ¡crecimiento exponencial!, expresión que se utiliza cuando algo crece muy deprisa. |
|||||||||||||
1.- Observa la siguiente escena que
representa la función exponencial y = ax.
Inicialmente el valor de a es 2.
2.-Observa los valores que va tomando "y" si se van variando los de x (cambiarlos en la ventana inferior correspondiente).
|
|||||||||||||
3.-Haz lo mismo con los valores de "a" ¿qué se va observando en la gráfica dibujada en azul?. 4.-En particular, ¿qué se observa cuando a = 1, a >1, a <1 pero siempre a positivo?. 5.-¿Y en el caso en que sea a negativo? De estas observaciones deducimos las primeras consecuencias para las funciones exponenciales: 6.-Observa que para que la función tenga sentido y se pueda dibujar debe ser a > 0 ¿sabrías decir por qué?. Piensa por ejemplo si a = -2, ¿cómo se definiría (-2)1/2 ? . Lo mismo pasaría con otros valores de x, por lo que la función no tendría sentido. Observa que si a = 0, se trata de la función 0, sin interés. 7.-Observa que la función cuando a > 1 es muy distinta que cuando a < 1, y además que cuando a = 1 se trata de una recta. |
2. PROPIEDADES GENERALES | |
A partir de ahora siempre supondremos que a > 0 y que a # 1 .en la siguiente escena observaremos las propiedades o características de las funciones exponenciales. |
|
1.- Observa que
la función existe para
cualquier valor de x (basta con que escribas cualquier valor
de x en la ventana inferior de la escena y ver que siempre se obtiene
el correspondiente de y, aunque para valores muy grandes de
x el
programa no presente el que toma "y"
realmente por ser muy grande y para valores negativos grandes de x
tome como y=0 por valer casi 0).
1ª característica: Decimos que la función existe siempre o que el DOMINIO de la función es todo R. |
|
2.-Observa que en todos los casos la función pasa por un punto fijo: el (0,1) (basta que asignes el valor a x = 0) o sea que 2ª característica: CORTA AL EJE DE ORDENADAS en el punto (0,1). 3.-Observa que los valores de y son siempre positivos (prueba cuantos valores desees para x). por tanto: 3ª característica: LA FUNCIÓN SIEMPRE TOMA VALORES POSITIVOS para cualquier valor de x. 4.- Observa que es siempre creciente o siempre decreciente (para cualquier valor de x), dependiendo de los valores de la base "a". 4ª característica: la función es creciente si a>1 y si 0<a<1 es decreciente 5.-Observa que se acerca al eje X tanto como se desee, sin llegar a cortarlo, hacia la derecha en el caso en que a<1 y hacia la izquierda en caso de a>1 5ª característica: El EJE X ES UNA ASÍNTOTA HORIZONTAL (Hacía la izquierda si a>1 y hacía la derecha si a<1) |
3. EJEMPLOS DE FUNCIONES EXPONENCIALES |
Finalmente en la siguiente escena se te presentan dibujadas los dos tipos de funciones exponenciales, además de la constante cuando la base es 1; para a =2, a = 1 y a = 1/2. Además, en rojo se dibuja una función exponencial de base 3, que puedes ir variando a tu gusto. |
|
Leoncio Santos Cuervo | ||
Ministerio de Educación, Cultura y Deporte. Año 2001 | ||
Los contenidos de esta unidad didáctica están bajo una licencia de Creative Commons si no se indica lo contrario.