En toda esta página consideraremos dos funciones f(x) con límite cero en cierto punto a y g(x) con límite infinito en el mismo punto a.
Es decir
Haz que la x tome valores próximos al punto a, tanto por la izquierda como por la derecha y observa qué sucede con f(x)*g(x). En este ejemplo el límite cuando x tiende al punto a de f(x)*g(x) es más infinito. |
Haz que la x tome valores próximos al punto a, tanto por la izquierda como por la derecha y observa qué sucede con f(x)*g(x). En este ejemplo el límite cuando x tiende al punto a de f(x)*g(x) es menos infinito. |
Haz que la x tome valores próximos al punto a, tanto por la izquierda como por la derecha y observa qué sucede con f(x)*g(x). En este ejemplo el límite cuando x tiende al punto a de f(x)*g(x) es más infinito por la derecha y menos infinito por la izquierda. |
El parámetro t que aparece en esta gráfica permite que trabajemos con distintas funciones f(x). Todas ellas tienen límite cero en el punto a, pero el producto entre f(x) y g(x) va cambiando. Selecciona un valor cualquiera para t, tanto positivo como negativo. Después, acerca la x al punto a para averiguar cuánto vale el límite del producto cuando x tiende al punto a. Repite el ejercicio para distintos valores de t y observa que se puede obtener cualquier límite. En particular, pueden obtenerse los límites 1 y 0. |
Ministerio de Educación, Cultura y Deporte. Año 2000 | ||