MOVEMENTO HARMÓNICO SIMPLE

1. Representación dun corpo que describe un movemento armónico simple(supoñemos, nun principio, que $\phi=0$)

Observa que o corpo (punto móbil) que des	cribe o mhs se despraza entre dous puntos	
extremos, pasando por un punto medio de equilibrio. Trata de identificar as		
magnitudes anteriormente citadas que caracterizan o movemento. Paréceche que ten		
velocidade constante?		
Modifica o valor da amplitude A e fíxate		
no resultado		
Varía o valor do período T e observa os		
cambios que se producen no movemento		
¿Como varían os valores da frecuencia		
cando variamos T?		
¿E os valores da pulsación w?		
Para A=4 m e T=5 s, determina coa		
simulación os valores de y nos instantes		
(en s) $t=2,5/t=8 / t=12$ e $t=20$. Presentaos		
nunha táboa e comproba se coinciden cos		
valores determinados coa ecuación do		
movemento		
Toma A=10 m e T=7 s. Tarda o mesmo		
tempo en ir de 0 a 5 m que de 5 a 10 m.?		
Especifica os tempos obtidos, xustifícao e		
compróbao analiticamente		

- Na páxina que che indicamos de seguido podes observar un movemento similar. Anota as túas observacións. Saberías dicir (calcular) en que instante de tempo a elongación x vale 3 m [Toma A=5 m e T=4 s]?Determina os instantes nos que x = -3,54 e x= 4 m
- 3. Nesta mesma páxina e na introducción hai un resorte que realiza un mas. Coa axuda dun cronómetro, determina o seu período de oscilación. Pensas que tarda o mesmo tempo en ir de O a M (A/2) e de M a P(x=A)?

http://teleformacion.edu.aytolacoruna.es/FISICA/document/fisicaInteractiva/mas/index.htm

2. Cinemática do mhs

a) A posición no mhs

Na escena obsérvase como, a medida que transcorre o tempo (eixo horizontal), a posición (eixo vertical) segue unha gráfica de tipo senoidal.

Modifica o valor da amplitude do movemento e observa os cambios que se producen na gráfica	
Cambia o período do movemento e analiza os cambios na gráfica, na pulsación e na frecuencia	
¿Poderías identificar e deducir da gráfica o valor do período se non o coñeceras?	
Obtén a gráfica da posición en función do tempo para o caso particular no que $\varphi=0$, w=1 rad/s e A=5 m [Toma para valores de t os seguintes: 0, T/4, T/2, 3T/4 e T]	

b) A velocidade no mhs

Na escena aparece representado o vector velocidad do corpo que realiza o mhs. Na gráfica, de tipo cosenoidal, represéntanse valores de velocidade fronte a valores de tempo.

Cambiando os valores de amplitude e de frecuencia poderás comprobar a súa influencia no vector velocidade do corpo e na gráfica que o representa	
O vector velocidade é sempre tanxente á traxectoria e do mesmo sentido do movemento. ¿En que condicións toma a velocidade signo positivo na gráfica?¿E negativo?	
Investiga, observando o movemento do corpo e a gráfica, en que posicións se atopa o corpo cando a velocidade toma os seus valores absolutos máximos e mínimos	
Obtén a gráfica da velocidade en función do tempo para o caso particular no que $\phi=0$, w=1 rad/s e A=5 m[Toma para valores de t os seguintes: 0, T/4, T/2, 3T/4 e T]	

c) A aceleración no mhs

A frecha representa o vector aceleración e a gráfica é o resultado de representar os valores de aceleración fronte ao tempo.

O vector aceleración é sempre tanxente a traxectoria e o seu sentido depende da elongación ¿En que condicións toma a aceleración signo positivo na gráfica?¿E negativo?	
Investiga, observando tanto a frecha como a gráfica, en que posicións se atopa o corpo cando a aceleración toma os seus valores absolutos máximos e mínimos	
Obtén a gráfica da aceleración en función do tempo para o caso particular no que $\varphi=0$, w=1 rad/s e A=5[Toma para valores de t os seguintes: 0, T/4, T/2, 3T/4 e T]	

d) Posición, velocidade e aceleración no MHS

1)Observa a variación das distintas	
magnitudes do M.H.S: elongación,	
velocidade, aceleración, forza	
(recuperadora) e enerxía, seleccionando o	
cadro correspondente no applet	
Comproba que a forza recuperadora é	
contraria á elongación e indica en que	
puntos alcánzanse os valores máximos e	
mínimos de cada magnitude.	
Observa o valor de cada magnitude	
vectorial (lembra que a enerxía non é unha	
magnitude vectorial). Podes ver os valores	
destes vectores aplicados sobre a masa	
que oscila, e a representación dos seus	
módulos fronte ao tempo no gráfico da	
dereita	
Comproba, mirando o reloxo do applet ou	
no eixo x (de tempos na gráfica) que,	
mentres o resorte realiza unha oscilación	
completa, transcorre o tempo que se	
indica no "Período de oscilación".	
O valor do período varía ao cambiar a	
masa do resorte (é un resorte distinto, ten	
distinta k) ou a masa. O valor máximo do	
período que permite o applet, dáse ao	
oscilar unha masa de valor 10 para cada k	
elixida.Compróbao!	

2.- Na animación o resorte empeza a oscilar desde a posición comprimida. A elongación, polo tanto, para t = 0 é x = A. O desfase inicial é de 90°. Comproba que, para describir a variación da elongación co tempo, son correctas as dúas fórmulas seguintes :

$$x = A \operatorname{sen}(wt + p/2)$$
; $t = 0 \Longrightarrow x = A$
 $x = A \cos(wt)$; $t = 0 \Longrightarrow x = A$

Usando o applet e a fórmula comproba que non emprega o mesmo tempo en percorrer a primeira metade da amplitude ca segunda (distancias OP e PM).

3)Selecciona o cadro da velocidade,	
deixando como valores da constante do	
resorte a masa e a amplitude que salguen	
no applet por defecto	
Lanza o applet pulsando en "Comezar" e	
anota o valor da velocidade máxima que	
verás na parte de abaixo cando pasa polo	
centro	
Calcula, con lapis e papel, a w a partir do	
dato "T" do applet, e comproba que se	
cumpre a fórmula da velocidade máxima.	
En que posición ten velocidade máxima?	

Trata de calcular a velocidade media	
dunha oscilación completa. Será igual á	
inicial (V=0) máis a final dun extremo	
dividida por dous? Ou se calcula	
dividindo a distancia percorrida (4A) polo	
tempo empregado (T)?.	
Indica os signos da velocidade sobre o	
diagrama. Na fórmula da velocidade en	
función da posición, para un mesmo punto	
(x) obtéñense dous valores da velocidade	
$(\pm v)$, que corresponden ao paso do corpo	
oscilante por ese punto, cando avanza nun	
ou outro sentido.	

4.- Selecciona o botón da aceleración e observa en que puntos o seu vector é máximo (vector azul). Escribe no teu caderno as ecuacións da aceleración (son dúas: unha en función da posición e outra do tempo).

5.- Representa a aceleración fronte á distancia. A que será igual a pendente da recta?.

6.- Fixa unha masa de 5 kg. Deixa invariables os valores da constante do resorte e da amplitude (isto supón estirar sempre a mesma lonxitude do resorte antes de soltalo). Cobre todos os datos da táboa para as masas que se indican. Variou a velocidade máxima?. Trata de atopar a relación entre a velocidade máxima e a masa. Podes ver esta relación ao final desta páxina.

Masa m (kg)	Velocidade máxima(m/s)
5	
6	
7	
10	

7.- Selecciona o botón para ver o comportamento da aceleración no applet. Coloca un valor de masa de 5 kg e non varíes os valores da constante nin da amplitude (debe ser 0.05 m). Lanza o applet e anota a aceleración máxima.

Varía a amplitude (distancia que estiras o resorte antes de soltalo) e apunta os valores da aceleración máxima na táboa seguinte.

Podes atopar unha expresión que relacione a aceleración máxima coa amplitude?. Ao final desta páxina podes ver a resposta.

Amplitude A (m)	Aceleración máxima (m/s ²)
0,05	
0,07	
0,09	
0,1	

3. Relación entre o mhs e o mcu: un corpo real e un auxiliar

O movemento harmónico simple dun corpo real se pode considerar como o movemento da proxección dun corpo auxiliar que describise un movemento circular uniforme de radio igual á amplitude A e velocidade angular w, sobre o diámetro vertical da circuferencia que percorre.

Selecciona valores para A e T e observa como a posición do corpo real coincide coa sombra que o corpo auxiliar proxectaría sobre o diámetro vertical da circuferencia se a escena estivese iluminada dende os lados esquerdo e dereito	
Cambia os valores de amplitude e período e observa as modificacións producidas	
Observa na pantalla como o producto wt coincide co ángulo que describiu en cada momento o corpo auxiliar	

Na mesma páxina web anterior (páxina de J. Villasuso) tamén podes estudiar a relación entre estes movementos

(http://teleformacion.edu.aytolacoruna.es/FISICA/document/fisicaInteractiva/mas/)

Á dereita do resorte azul oscilante con	
M.H.S, tes a representación da posición da	
masa oscilante fronte ao tempo	
Comproba que a ecuación situada non	
bordo superior esquerdo do applet (no que	
cambean os valores) é unha	
circunferencia. Nela podes ler o valor da	
amplitude, que coincide co radio $(A = 78)$,	
e os valores (x,e) que coinciden cos das	
coordenadas do punto que xira	
Coa axuda de "Reset" e "Start" calcula ou	
valor do período Obtés T= 4s=? Tarda o	
mesmo tempo en percorrer a metade dá	
amplitude cara ao centro que cara os	
extremos?	
Recordas a fórmula da velocidade dun	
M.A.S en función do tempo?	
Correspóndese a súa representación coa	
curva de puntos da dereita do applet?	
Comproba que a ecuación da posición	
para ou resorte amarelo é: $x = A \cos(w t)$	
xa que para $t = 0 -> x = A$	
Comproba que cando ou punto negro xira	
un ángulo de 30° a súa proxección xa está	
na metade da amplitude. Recorda que o	
punto negro para chegar á metade do arco	
ten que percorrer 45°	

Na páxina podes acceder a un video de Youtube onde podes ver a relación entre o MCU e o MAS

http://iesfgcza.educa.aragon.es/depart/fisicaquimica/fisicasegundo/videosmas.html

Estudio da fase inicial (Páxina Villasuso e applet de Angel Franco)

http://teleformacion.edu.aytolacoruna.es/FISICA/document/fisicaInteractiva/mas/index.htm

Observa o punto onde empeza a moverse o móbil na circunferencia. Cando o desfasamento é cero, coinciden a orixe de espazos coa orixe de tempos. Na gráfica da posición fronte ao tempo, observa que o M.H.S empeza no punto medio ou de equilibrio	
Cambia o valor do desfasamento. Podes elixir un valor entre 0 e 360°. Para facelo, feixe un click no cadro adecuado, borra o seu contido, coloca o ángulo que queiras (empeza cun desfasamento de ángulo pequeno, por exemplo 45°) e pulsa "Empezar". Observa onde empeza agora o móbil. Notas algunha diferenza na gráfica? Que conclusión sacas?	
Para dous desfasamentos suplementarios (ex. 30° e 150°) o movemento empeza no mesmo punto cos mesmos valores das velocidades (en módulo), pero con sentidos opostos, é dicir, arrinca do mesmo punto, pero avanza en sentido contrario. Compróbao. É cero a velocidade inicial?	
Modifica agora libremente a amplitude, mantendo constantes as outras dúas variables. Podes elixir valores entre 0.5 e 2 . Que variación observas?	
Por último, modifica libremente a frecuencia. Admite valores entre 1 e 2. Que deduces do cambio de frecuencia, mantendo fixas as outras dúas variables?	

Relación entre o mhs e o mcu: un corpo real e dous auxiliares

Move o corpo real a posición inicial que desexes. Observa os corpos auxiliares que teñen a súa proxección sobre o corpo real. Nembargantes, só a proxección dun deles vai seguir ao corpo real cando este inicie o seu movemento.

Escolle no menú o sentido inicial do movemento do corpo. Escolle cos pulsadores do botón "corpo auxiliar" cal deles cre que é o correcto Pulsa o botón "animar" para comprobar se a túa elección foi a correcta	
Repite varias veces a experiencia cambiando a posición inicial do corpo real e o sentido no que parte	
Fíxate no caso particular no que o corpo real se atope inicialmente nun dos extremos da súa traxectoria.¿Que sucede neste caso concreto?	

4. Dinámica do mhs

Cando comences a animación podes ver o vector aceleración (branco) e o vector forza elástica (vermello). Cos pulsadores podes variar os valores de amplitude, período e masa (utiliza o zoom si é necesario)

Detén a animación en distintas posicións e relaciona o sentido da aceleración e da forza co signo da elongación	
Varía o valor da amplitude (A) e escribe os correspondentes valores de F. ¿Que relación hai entre eses valores?	
Varía o valor do periodo e comproba se tamén varía o valor da forza	
Finalmente, varía o valor da masa (m) do corpo e comproba como varían os valores da forza (F)	
Fai unha táboa onde indiques como varían os valores de F para distintos valores de t para uns valores determinados de amplitude (A), período (T) e masa(m)	

4.1 MHS de corpos unidos a un resorte

Inicia o movemento cunha amplitude determinada e utiliza o mesmo valor para as constantes dos resortes e masas diferentes para os corpos. Anota as túas conclusións	
Utiliza agora dúas masas iguais nos resortes que teñen diferente constante elástica	
Mantendo as masas iguais busca valores de k_1 e k_2 que fagan que un resorte teña o dobre de frecuencia que o outro. ¿Cal é a relación entre as constantes? Usa agora valores iguais para as constantes e busca valores de masas que fagan dobre unha das frecuencias	

$4.2 \ Din \acute{a}mica \ (http://teleformacion.edu.aytolacoruna.es/FISICA/document/fisicaInteractiva/mas/index.htm)$

Na gráfica que aparece baixo a mesa do applet mira a representación da forza fronte á elongación. Que sinala o punto verde? Quizais a posición de equilibrio? A suma da forza peso e a forza recuperadora é cero nese punto? É cero a velocidade nese punto? E a aceleración?	
Coñecendo a masa e a constante acha a pulsación utilizando lapis e papel. A partir dela acha o período da oscilación e comproba o seu valor no applet. Podes variar o período alargando máis o resorte cando o lanzas? A maior elongación, maior período?	
Comproba que, para unha masa dada, ao alcanzar a elongación máxima ao lanzala, a forza recuperadora será máxima, e por tanto maiores aceleración máxima e velocidade máxima, pero sempre o mesmo período. Inflúe a masa no período de oscilación?	
A representación da velocidade fronte ao tempo é unha curva senoidal. Comproba que a representación da velocidade fronte á distancia é unha elipse (curva vermella da figura) Para que valores de "x" a velocidade ten valor cero?.	

5. Estudio enerxético do mhs

Observa, en primeiro lugar, que ainda que	
as enerxías cinética e potencial varíen, a	
enerxía total do movemento permanece	
constante. Anota os valores destas	
enerxías en tres instantes diferentes, para	
valores fixos de A, T e m	
Para valores de T e m fixos, varía os	
valores de A e anota os valores	
correspondentes de E_c , E_p e E_T ¿Que	
conclusións deduces?	
Fai o mesmo que no apartado anterior,	
variando sucesivamnete os valores de T e	
m e mantendo as outras dúas magnitudes	
fixas. Anota as túas conclusións.	
As enerxías cinética e potencial varían	
cando o fai a posición do corpo. ¿En que	
posicións do corpo toman os seus valores	
máximos e mínimos as enerxías cinética e	
potencial elástica?	

5.1 Estudio gráfico das enerxías implicadas

Anota as enerxías cinética, potencial e	
total para oito posicións diferentes.En	
cada instante, a diferencia entre a enerxía	
total e a enerxía cinética representa a	
enerxía potencial elástica	
Comproba de novo que ainda que as	
enerxías cinética e potencial elástica	
varían continuamente, a enerxía total	
permanece constante. Observa tamen as	
oposicións do corpo que fan máximos e	
mínimos ámbolos dous tipos de enerxía	

5.2 Forza e Enerxía [applet de http://www.sc.ehu.es/sbweb/fisica/]

Introduce o valor de $m\omega^2$, actuando en la	
barra de desprazamento titulada	
Constante e tamén a enerxía total da	
partícula E, actuando na barra de	
desprazamento titulada Enerxía.	
Pulsa no botón titulado Empieza	
Observa os valores da enerxía cinética,	
potencial e a forza sobre a partícula, en	
particular, cando a partícula pasa pola	
orixe e polas posicións de máximo	
degenerate. Anote estas volumes	

5.3 Máis Enerxía:

(http://teleformacion.edu.aytolacoruna.es/FISICA/document/fisicaInteractiva/mas/index.htm)

Observa a liña vertical que sale do punto	
vermello. Esta liña vermella representa os	
valores da enerxía cinética e a liña azul a	
enerxía potencial elástica. Comproba en	
que puntos da traxectoria alcánzanse os	
valores máximos para cada tipo de	
enerxía. Podes visualizar os valores	
numéricos de ambas as enerxías na parte	
superior esquerda do applet. Para velo	
mellor, pulsa o botón "Pausa".	
Comproba que a suma da enerxía cinética	
máis a potencial é a enerxía total. A	
enerxía total sempre é a mesma. A	
parábola azul é a representación de $\frac{1}{2}$ K x ²	
fronte a x?	
Cambia o valor da constante do resorte a 5	
unidades sen cambiar a enerxía total.	
Observa que sucede. Sabes explicar a	
razón?	
Que representa o vector de cor morada	
que aparece na gráfica? Está sempre	
dirixido cara ao centro? Podes achar a	
forza recuperadora máxima do resorte?	
Podes interpretar esta expresión:	
-dEp/dx = F ?	
Que dirección ten a forza dada pola	
expresión anterior? Comproba a dirección	
do vector morado	

6. Exemplos de mas

a. Péndulo simple [applet de http://www.sc.ehu.es/sbweb/fisica/]

Determinación do valor de g

Selecciónase un corpo celeste da lista de	
corpos celestes, no control selección	
titulado Planeta	
titulado i lancia	
Establécese a lonxitude l do péndulo en	
cm_actuando na barra de desprazamento	
enii, aetaanao na carra de desprazamento	
Púlsase o botón titulado En marcha, para	
pór en marcha o cronómetro, púlsase o	
mesma botón titulado Parar, para medir o	
intervale de tempo Neste "experiencie"	
intervato de tempo. Nesta experiencia	
midese o tempo de cinco oscilacións	
Cámbiase a lonxitude do péndulo e	
realízase unha nova medida e así	
succeivamento	
sucesivamente	
No control área de texto, situado á	
esquerda do applet recóllese os datos	
"experimentais", lonxitude do péndulo (en	
m) período (dunha oscilación en s). Cando	
se teñen suficientes datos púlsase o botón	
titulado Gráfica. Anota na folla de	
actividades, nunha táboa, os datos xerados	
O programa interactivo traza a recta cuxa	
pendente é a inversa da aceleración da	
gravidade g e os datos "experimentais" en	
forma de puntos de cor vermella, Que	
representamos nos eixos X e Y? Xustifica	
por que a pendente da recta é a inversa de	
σ	
g	

b. Resorte elástico

Medida da constante elástica dun resorte (método estático)

Cada vez que se pulsa o botón titulado Nuevo, o programa interactivo xera un número ao azar que representa o valor da constante elástica dun resorte, cuxo valor imos determinar realizando a "experiencia".	
Colgamos do extremo libre do resorte	
pesas de 50 g cada unha e medimos na	
regra a deformación x do resorte	
Transformamos o peso F expresado en	
gramos en newtons (N) multiplicando	
polo factor 0.0098, e a deformación x en	
centimetros expresamola en metros. Os	
pares de datos (x, F) recollense no control	
area de texto situado a esquerda do appiet.	
Cando teñamos suficientes datos púlsase o botón titulado Gráfica	
Anota na túa folla de actividades os datos	
obtidos e determina o valor de k	

c. Medida da constante elástica dun resorte (método dinámico)

Cada vez que se pulsa o botón titulado	
Nuevo, o programa interactivo xera de	
forma aleatoria o valor da constante	
elástica dun resorte, cuxo valor imos	
determinar realizando esta "experiencia".	
Colgamos do extremo libre do resorte	
unha pesa de 50 g, arrastrándoa co	
punteiro do rato. Pulsamos o botón	
titulado Empieza. O sistema formado pola	
masa e o resorte comeza a oscilar.	
Mídese o tempo de cinco oscilacións	
completas, cun cronómetro. Ponse en	
marcha o cronómetro pulsando o botón	
titulado En marcha, e párase pulsando o	
mesmo botón titulado agora Parar	
Colgamos unha ou máis pesas de 50 g e	
repetimos o procedemento de medida do	
tempo de cinco oscilacións	
Os datos da "experiencia" masa m (en kg)	
das pesas que colgan do resorte, período	
5?P (de 5 oscilacións en s) recóllense no	
control área de texto, situado á esquerda	
do applet.	

A determinación de g cun péndulo simple e a determinación da constante elástica dun resorte polos métodos estático e dinámico tamén se fan no laboratorio