Expresiones algebraicas. | |
POLINOMIOS |
|
Un polinomio es una expresión algebraica que se obtiene al expresar cualquier suma de monomios no semejantes. Si recordamos la suma de monomios, cuando estos no eran semejantes, no se podían sumar. En este caso lo que se obtiene es por tanto un polinomio. Ejemplo 8.- Son polinomios las expresiones siguientes: a) 4ax4y3 + x2y + 3ab2y3 b) 4x4 -2x3 + 3x2 - 2x + 5 En el primer caso el polinomio consta de la suma de tres monomios, cada uno de ellos es un término del polinomio, luego tiene tres términos., cada uno con varias letras, mientras que en el segundo caso el polinomio tiene 5 términos. Si un término sólo consta de un número se le llama término independiente (5 en el caso b y no existe en el caso a) Cuando un polinomio consta de dos monomios se denomina binomio: x2y + 3ab2y3 ; 2x + 3 son dos binomios Cuando consta de tres monomios se denomina trinomio: el caso a) anterior o -2x3 + 3x2 + 5 son dos trinomios. Con más de tres términos (monomios) ya se denomina en general polinomio. Respecto al grado de un polinomio, se dice que tiene por grado el mayor de los grados de los monomios que lo forman. Así en el caso a) los grados de los monomios (suma de los exponentes de las letras) son 8, 3 y 6, luego el grado del polinomio es 8. En el caso b) el grado es 4. Los números que acompañan como factores a las letras (coeficientes de los monomios), se llaman también coeficientes del polinomio: 4 , -2 , 3 , -2 , y 5 respectivamente en el caso b).
|
Para multiplicar dos polinomios se deben multiplicar todos los monomios de unos por todos los del otro y sumar los resultados. ("Atención especial al producto de potencias de la misma base") Si uno de los dos polinomios es un monomio, la operación es simple como se puede ver en la escena siguiente, en la que se pueden variar los coeficientes. En el caso en que ambos polinomios consten de varios términos, se puede indicar la multiplicación de forma semejante a como se hace con número de varias cifras, cuidando de situar debajo de cada monomio los que sean semejantes. En la siguiente imagen se puede ver el producto de dos polinomios de varios términos. Ejemplo 11.- En la práctica no suele indicarse la multiplicación como en esta imagen, sino que suelen colocarse todos los términos seguidos y sumar después los que sean semejantes. Así: Ejemplo 12.- ( - 2x3 + 3x2 - 2x + 5 ) · (x + 1) = (-2x4 +3x3 -2x2 + 5x - 2x3 + 3x2 - 2x + 5) = - 2x4 + x3+ x2 +3x + 5.
Se denominan así a algunas operaciones con polinomios de especial interés ya que aparecerán frecuentemente en los cálculos. Las más usuales son: Cuadrado de un binomio: suma (a + b)2 o diferencia (a - b)2 Naturalmente realizar un cuadrado es multiplicar el binomio por sí mismo, luego: (a + b)2 = (a + b ) · (a + b) = a2 + ab + ba + b2 = a2 + 2ab + b2 " El cuadrado de una suma es igual al cuadrado del primero más dos veces el primero por el segundo más el cuadrado del segundo " De modo similar: (a - b)2 = a2 - 2ab + b2 ( igual que antes pero cambiando el signo central). "En cualquier caso se debe tener en cuenta que el primer término "a" también puede ser negativo y por tanto cambiar el signo central". "En general se puede considerar siempre como una suma y para cada término asignarle el signo que le preceda (ver ejemplo 13 - b) Ejemplo 13.- a) (2x + 3y)2 = (2x)2 + 2 · 2x · 3y + (3y)2 = 4x2 +12xy + 9y2 b) (- x + 3)2 = (-x)2 + 2 · (-x) · 3 + 32 = x2 - 6x + 9 Suma por diferencia: se refiere al producto de la suma de dos monomios por la diferencia de ellos mismos: (a + b) · (a - b) = a2 - ab + ba + b2 = a2 - b2 Siempre recordamos que " suma por diferencia es igual a la diferencia de los cuadrados" . Otras igualdades importantes pero menos utilizadas pueden son: Cubo de una suma: (a + b)3 = a3 + 3a2b + 3ab2 +b3 Cuadrado de un trinomio: (a + b + c)2 = a2+ b2 +c2 + 2ab+ 2ac + 2bc
|
Los contenidos de esta unidad didáctica están bajo una licencia de Creative Commons si no se indica lo contrario.