## CLASE 6 PLANOS Y VOLUMENES

En esta clase de nuestro tutorial de Descartes 3D vamos a practicar con superficies planas y su interacción con algunos volúmenes.

## Actividad 1. Construcción de planos 3D

1.1 Desde el Gestor de Escenas abre la escena que llamamos clase 2 (repasa esta clase y construye la escena, en caso de no haberlo hecho). Debe aparecer el sistema de coordenadas 3D (ver figura).



1.2 Crea los siguientes controles para dimensionar nuestro primer plano:

| español                                      | -         | deshacer                 | 💌 reh              | acer             | original  | nueva      | código         | macro ?   |
|----------------------------------------------|-----------|--------------------------|--------------------|------------------|-----------|------------|----------------|-----------|
| C Botones 👘 C B                              | Espacio - | <ul> <li>Cont</li> </ul> | roles 🤇            | Auxilia          | res 📀 Gra | áficos 🔿 g | ráficos 3D 🛛 🔿 | Animación |
| + * <mark>▲</mark> - Con<br>d (numérico)     | ntroles   | id d                     | 0)                 | oulsado<br>valo  | or 🔽      | sur 💌      | espacio E1     | I fijo    |
| e (numérico)<br>h (numérico)<br>i (numérico) |           | nombre                   | desliza<br>exponer | incr<br>ncial-si | 0.1       | min -3     | max 3          | sible     |
|                                              |           | dibujar-si               |                    |                  | ,         |            |                |           |

Los nombres y parámetros de cada control se describen a continuación.

**Deslizador (d):** control tipo pulsador con un valor inicial de 1.5, con valores mínimo y máximo dados por el intervalo [-3, 3]. Útil para deslizar nuestra superficie en el plano xy. Dale el nombre **desliza** y asígnale un decimal e incremento 0.1.

**Escala (e):** control tipo pulsador con un valor inicial de 3, en el intervalo [1, 5]. Este control le da tamaño a nuestro plano. Su nombre es **escala**, con cero decimales e incremento de uno (1).

**Alto (h):** control tipo pulsador con un valor inicial de 0. Útil para desplazar el plano a lo largo del eje z. Su nombre es **alto.** 

Ángulo (i): control tipo pulsador con un valor inicial de 0. Con incremento de 5.

## **Explicaciones de los controles**

El plano que vamos a crear es una superficie (Opción gráficos 3D) determinada por las siguientes ecuaciones paramétricas:

 $x = e^{u} - d$   $y = e^{v} - d$   $z = h + y^{tan}(i^{p}/180)$ 

Las ecuaciones en **x** y en **y** nos permiten obtener un plano perpendicular al eje z. Si sólo tuviéramos las ecuaciones x = u, y = v, z = 0. La superficie estaría sobre la región positiva del plano xy. Es aquí donde es útil el control **d**.

Si d = 1.5 las ecuaciones paramétricas serían x = u - 1.5, y = v - 1.5, z = 0. El plano se desliza como se observa en la figura. Aún así, el plano es muy pequeño con respecto a los ejes coordenados. Es aquí donde el control **e** es importante.



Si  $\mathbf{e} = 2$  y  $\mathbf{d}$  un valor de 1. Las ecuaciones paramétricas serían x = 2u - 1, y = 2v - 1, z = 0.

Si deseamos desplazar el plano a lo largo del eje z, le doy un valor diferente de 0 a la ecuación paramétrica z.

Por ejemplo, con z = 1, el plano anterior sería como se observa en la figura de la derecha.

Finalmente, si queremos que el plano se incline con respecto a cualquiera de los ejes (x o y), añadiría a z dicha inclinación. He aquí la importancia del control que llamamos ángulo.

Por ejemplo, con las ecuaciones: x = 2u - 1, y = 2v - 1,  $z = 0.5 + y \tan(\pi/4)$  obtendríamos un plano como se observa en las figuras de abajo (inclinado con respecto al eje y). Si la ecuación en z fuera  $z = 0.5 + x \tan(\pi/4)$ , la inclinación sería con respecto al eje x.



 1.3 Desde la opción de gráficos 3D añade una superficie con las siguientes ecuaciones:
 x=e\*u-d, y=e\*v-d, z=h+y\*tan(i\*pi/180). Activa la opción cortar para esta superficie. Cambia al color que desees y finalmente en la opción espacio cambia el despliegue por pintor.





## Algo así como la figura de abajo será tu resultado. Guárdalo como clase 6.

Actividad 2. Planos y volúmenes cortados

En el ejercicio anterior es posible crear algunos volúmenes de tal forma que se intercepten con el plano que diseñamos. De esta forma, obtendríamos figuras como:



Un ejercicio interesante sería añadir un cono para observar las secciones cónicas. Utiliza los controles y podrás obtener todas las secciones. Por ejemplo, una elipse:



Te lo dejamos como ejercicio (recuerda de activar el parámetro **cortar** y ensaya con más transparencia en los colores)

Hasta pronto. En <u>www.descartes3d.blogspot</u> podrás practicar con el *applet* final.

Juan Guillermo Rivera Berrío