FUNCTIONS AND GRAPHS I Cartesian coordinates Organization of the plane. René Descartes, a French philosopher and mathematician
(1596-1650) bases his philosphical thought on the need of taking a point from which to
construct all knowledge: I think then I exist. In mathematics, he is the
creator of analytical geometry, constructed also by taking a
starting point and two perpendicular straight lines which intersect at this point. This
construction is called a Cartesian coordinate system.
1.- Move the mouse over the rectangle above, click the main
button and see what happens. The emphasized white sraight lines are called Axes
and the point in which they intersect is called the Origin. The Cartesian Plane The horizontal axis is called the X axis
and the vertical one is called the Y axis.
2.- Change the scale and move the axes to see that with the
reference system (O;X,Y) all the points on the plane can be "named".
(Use the coloured arrows or write the
values that you want in the text fields of the scale, of Ox
and of Oy. The Init button returns to the initial
conditions.) Points and pairs of numbers. With this reference system each point on the plane can be
"named" with two numbers, which are usually written in parentheses and separated
by a comma. On starting this activity the red point is in (2,3).
3.- Displace the red point to the following positions using
the arrows or writing the numbers. (Use
the changing scale or move the axes when you need to.) (2,5), (-3,2), (-5,-2), (-3,0), (10,3), (7,-10), (0,5),
(20,16), (40,35), (-30,40), (1,-1) Invent pairs of whole numbers and put the point in the
corresponding positions. Coordinates of a point: abscissa
and ordinate. The numbers of each pair are called coordinates of the respective point,
the first number is called abscissa and the second ordinate.
( x , y )
4.- Modify the position of the point, as you did in the previous activity or drag the red point, and watch its coordinates (x,y).
Write in your book in which square the points have their two coordinates with the same sign and in which they are different.
Author: Juan Madrigal Muga
![]() |
||
Ministerio de Educación, Cultura y Deporte. Año 2000 | ||